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SEL¥F-STARTING MULTISTEP METHODS FOR THE NUMERICAL
INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS

By William A, Mersman
Ames Research Center

SUMMARY

Classical, multistep, predictor-corrector procedures for the numerical
integration of systems of ordinary differential equations are generalized to
provide compatible, self-starting methods. Explicit algorithms and tables of
numerical coefficients are presented.

INTRODUCTION

The numerical integration of systems of ordinary differential equations
on modern automatic computers is usually accomplished by means of so-called
multistep methods, particularly the predictor-corrector methods associated
with the names Adams, Bashforth, Moulton, Stormer, and Cowell, It is usually
assumed that these methods are not self-starting, and recourse is had to
single-step methods like that of Runge-Kutta to obtain starting values. This
leads to cumbersome computer programs requiring what amounts to unessential
tallying to determine whether enough starting values have been obtained.

The purpose of the present report is to derive simple generalizations of
the classical predictor-corrector formulas that immediately yield compatible
self-starting procedures that produce all the required backward differences
directly from the initial conditions,

STATEMENT OF THE PROBLEM

The problem is to devise a self-starting, multistep procedure for the
numerical solution of the initial value problem

dx
It =¥
& (1)
dy _ %
Friie £( :y’t)J
x(to) = Xo ‘
(2)
Y(to) = Yo




at the discrete, equally spaced points tpn, n=1, 2, 3, « «» » The vari-
ables x, y, and £ are vectors, all of the same (finite) dimension.

Let the common interval of the independent variable be denoted by h, so
that
tn=to+nh

and introduce the usual notation

xn = x(tn)

yn = Y(tn)
fp = f(Xn;Yh:tn)

The index, n, will be restricted to integral values, usually positive,
although negative values will be introduced in some of the starting procedures

to be discussed later.

The general problem, then, is to devise algorithms for calculating xp,
ynsy fpy for n =1, 2, 3, « « » , given simply the differential equations (1)
and the initial values (2). The theory for first-order systems is obtained by
ignoring the variable, x, throughout the general theory.

The procedure to be used is the conventional one of approximating the
function, f, by a polynomial in t of degree q. The problem is then split
into two: the forward integration problem and the starting problem.

The Forward Integration Problem

The problem of integrating forward one step will be solved by means of
backward difference formulas of the Adams type. Here it is assumed that tp,
Xns Yns fn, and the first q backward differences of fp:

N

vOfn = fp
Vin = fn - Tnoy
vk, = v i, - vElrn

k

1(1)q

]

J
are known. Several algorithms will be derived for computing all these
quantities at t = tp4q.

The Starting Problem
Before the forward integration algorithms can be applied, it is necessary

to compute initial values of the backward differences of f at some point,
preferably at t = to. This will be done by developing iterative algorithms
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for the backward calculation of X_p, V-n, f-n &t n = 1(1l)q, from which the
backward differences of fg are easily calculated.

It sometimes happens that the initial values lie near a singularity. In
this case the backward starter may fail. For this reason, iterative forward
starters will also be derived for the calculation of xn, yn, fy, at
n=21(1)qg.

In either case the final "output" of the starting procedure will be xg,
Yos fo, and the first g backward differences of fg, so that the starter
will be compatible with the forward integration procedures.

In the following section the basic backward difference equations will be
derived. These are generalizations of the equations usually ascribed to
Adams, Bashforth, Moulton, Stdrmer, and Cowell (ref. 1, chs. 5 and 6). It is
the generalization of the classical formulas that makes self-starting proce-
dures possible.

GENERALIZED BACKWARD DIFFERENCE EQUATIONS

Normal Form

The basic difference equations, relating vy, Vx, and vV¥x at +© = tj to
f and its backward differences at +t = tp, both Jj and n being arbitrary,
are

(o]
Wy =) 7ne,uPn ()
k=0
[se]
k=0
[o0]
VX3 = hyp + h‘gz (on-3,k+1 - Yo,k+1)Vifn (6)

k=0

These are written formally as infinite series to simplify certain index manip-
ulations. They terminate and are exact whenever f 1is a polynomial in t.

The proof is a straightforward generalization of Henrici's (ref. 1,

pp. 191-194 and 290-293). Write vy as a Taylor's series with remainder
centered at tj-1 (ref. 2, p. 95):

k
yj = Vi + hf f(tj_l + th)dr
o
Now note that

tjex +Th=tn -(n-3J+1-71h



Approximating f by means of Newbton's interpolating polynomial (ref. 1,
pp. 190-191) "
£(tn - sh) =z (-1)k <}s{> vy
k=0

where the symbol

<s> . __T(s +1)
K/ xif(s + 1 - k)
vields equation (4), with 9 given by

Tp,k = (-l)k£l<P ’ 13; ) T> ar (7)

Equation (5) is obtained similarly by writing the Taylor's series for
X3 and Xj-2 centered at tj-l

1
Xj = Xjoa t hyjoa + hzb/\ (1 - T)f(tj_l + Th)dr
o]

1
j-2 = X3-1 - hyj-i * h2\jp (1 - 7)f(tj-1 - Th)dr
o

adding and inserting Newton's interpolating polynomial yields equation (5),
with o given by

op,x = (-1)k£l(1 - T)KP * 11: ) T) +<P * 11: * T)] ar (8)

Before deriving equation (6) it is convenient to discuss equations (L)
and (5) and some of the properties of 7 and o.

Equation (4) with Jj = n + 1 is the Adams-Bashforth predictor (ref. 1,
pp. 192-193). Henrici uses the notation

Tk T 7Voa,k

Equation (4) with Jj = n is the Adams-Moulton corrector (ref. 1,
pp. 194-195). Henrici uses the notation

7" = 7o,k

Equation (5) with J = n + 1 is the Stdrmer predictor (ref. 1, pp. 291-
292). Henrici uses the notation

Ok = O-1,k



Equation (5) with j = n is the Cowell corrector (ref. 1, pp. 292-293).
Henrici uses the notation

ox¥ = Oo,k
As will be seen later, equations (4) to (6) with j=n - q(1)n - 1

form the basis for the self-starting procedures to be developed.

The most important property of ¢ and o is that each row is the first
backward difference of the preceding row:

Tpr1,k = 7p,k ~ Vp,k-1 K> 1 (9)
Op+i,k = Op,k = Op,k-1

while 7p,0 = 9p,0 = 1. These follow immediately from the definitions, equa-
J
tions (7), (8), and the well-known recurrence relation for the binomial coef-

ficlents:
o+ 1) _ (o + @
k T \k k-1

Equations (9) can be rearranged in the useful form

Vi’n-j,k+1 = 7n-j,k

J’n-j,k+1 n-Jj

] ’ (10)
Vion-j,k+1 = n-j,k

where the subscript on Vj 1is used to emphasize that © here operates on J,
not on n or k.

The tables of 7 and ¢ at the end of the report were computed by means
of the definitions, equations (7) and (8), for the first row (p= -1), and the
difference equations (9) for subsequent rows.

To return to the derivation of equation (6), note first that x bears

the same relation to y as y does to f. Hence, we can write equation (k)
in the transliterated form

o0
Xy = hZ)’n_j’meyn (ba)
=0
Writing equation (4) with Jj =n gives
oQ
T
Vin = hz?'o,rV Tn
r=o0

and taking the (m - 1)st backward Q%fference gives

_ 1 -1
vmyn =h 7o,rvm Ty

r=0



Substituting in equation (4a) and rearranging gives

co k
V-xj = hyn + h2 X X')’o’ryn_j’k_i_l_rkan (11)
k=0 r=0

Applying the backward difference operator vy and using equations (10) gives

0 k
- W2 k
szj = h }: }Ej7o,r7n-j,k-rv fn

k=0 n=o0

Comparison with equation (5) gives the important identity

k
Sp,k =ZE:70,r7p,k—r (12)
r=o
Hence,
k
E:VO,rVP,k+1—r = Op,k+1 ~ 7o,k+1
T=0

and this reduces equation (11) to equation (6). Q.E.D.
Equation (12) constitutes a valuable check on the tables of ¥ and o and

has been used. In addition, for small values of Xk, it is convenient to have
the explicit formulas

7p,0 = 1
7P:l

1
7P:2 T2 - 1

Gp,o = 1

Gp,l = -p - 1 (lll-)
_pp+1) 1

°p,2 T T3 T

Equation (6), with j =n + 1 or =n, constitutes a new predictor-
corrector scheme, to be discussed later, which appears to have some advantages
over the Stirmer-Cowell scheme of equation (5). For J =n - q(l)n - 1, equa-
tion (6), like equations (4) and (5), forms the basis for an iterative
starter.

This completes the derivation of the basic backward difference eqguations
in the normal form. Closely related to these are similar equations using the
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first and second sums. Astronomers have long used these concepts (ref. 3),
and further confirmation of their effectiveness is offered by Henrici (ref. 1,
pp. 327-339). These summed forms will be derived in the next section.

Summed Form
The basic difference equations, in the summed form, relating x and y at

t =15 to £, its backward differences and its backward sums at © = tp, both
J and n being arbitrary, are W

o]
Y3 = An + hz7n-j,k+1kan

k=0 _ > (15)
x; =Bn+ (J - n - 1Ay +1f3§:cn_j,k+2kan
k=0 J
where the backward sums A, and Bp are defined by these same equations with
J = n: o 3
Ap = ¥n - hZVO,kﬂkan
k=0 ) (16)
0
Bp = Xp + hiy 'lszzco,k+2kan
k=0 J

The names first and second sum for Ay and By, respectively, are justified by
the property

VAy = hfp (1)
7

VBn = h.An

The proof is quite straightforward. Replace the coefficient, 7, in equa-
tion (4) by its equivalent value from equations (10):

0
3TV hz%-a',kﬂkan

k=0
where, again, the subscript Jj is affixed to Vv +to emphasize that the opera-
tor, especially in the right member, acts on j rather than n or k. This is
a simple, linear difference equation whose solution is obviously the first of
equations (15), in which A, is an arbitrary constant vector, independent of
J, whose value is determined by setting J = n, equations (16).

If y, 1is now eliminated from equation (6) by means of the first of
equations (16), and if the coefficient, o, is replaced by means of equa-
tions (10), the result is again a simple, linear difference equation:



o0
Vij = hA, + Vj h< Zo‘n_j’k+zkar>
k=0

whose solution is clearly the second of equations (15), where B, dis another
arbitrary constant vector independent of Jj, whose value is defermined by
setting j =n (egs.(16)).

Equations (17) follow immediately from equations (16) on taking the back-
ward difference and applying equations (4) and (6) with J = n.

As will be seen in later sections, equations (16) will be used only once,
in connection with the starting procedure, to obtain initial values, Ap and
Bo, of the first and second sums. Subsequently, equations (15) with j =n+1
will yield the summed versions of the Adams-Bashforth and Stormer predictors,
while equations (15) and (17), with n replaced by a + land j =n + 1, will
yield the summed versions of the Adams-Moulton and Cowell correctors.

Before discussing starting procedures, it is necessary to convert the
basic difference equations (4), (5), (6), (15), and (16) to the backward ordi-
nate form, in which earlier values of [ are used rather than its backward

differences.
GENERALIZED BACKWARD ORDINATE EQUATIONS

The backward difference equations of previous sections have been written
formally ag infinite series merely for manipulative convenience. In practice,
it is assumed that f 1is approximated by a polynomial in t of degree q,
say, and the series are all truncated at k = q. If, then, the backward dif-
ferences in equations (15) and (16) are eliminated by means of the well-known
identity (ref. 1, p. 190) K

vEfn =Z (-1)™ Gﬁ) foom

and the order of summation is reversed in the resulting double sums, the
following backward ordinate equations are obtained in summed form:

q 3
¥y = An + hz7q,n-j,mfn-m
m=0

. 2
j =B+ (J -n-1)hA, +h Zcq’n_j’mfn_m

) |

ko]
I

where the coefficients ¥ and o are



Again the sums Ap and

Eliminating Ap
form of the backward

Y3

where the coefficients

The tables of vy, o, %, and B

using equations (19)

a h
m
7a,p,m = (-1) E:(%D "p, k2
k=m
? (19)
m k
9q,p,m = (-1) i<m> Ip, kt2
k=m )
By are given by setting j = n:
q )
An = ¥n '11§:7q,o,mfn-m
m=0
(20)
. >
By = Xp + hAp - hzj{:°qyo,mfn-m
m=0 )

and By from equations (18) and (20) then gives the normal
ordinate equations:

q
= ¥n ‘11§:“q,n—j,mfn—m
mM=0
21
. (21)
= xpy - (n - Jhy, + hzj{:Bq,n-j,mfn—m
m=0
a and B are
%q,p,m = 7g,0,m ~ 7q,p,m
(22)
Bq_,p,m - GQ.:P’m - GQ.)O’m + qu:o’m

at the end of the report were computed

and (22) together with the easily proved relations:

7q,p,0 = 7p-1,9+1 - 1

0g,p,0 = Op-1,q+2 + P + 1

74,p,4 = ('l)q7p,q+l

Sq,p,a = (-1)%0p,qea
Yq+1,p,m = Yq,p,m * (-l)m'<? n %) Yo, qte
9q+1,p,m = Og,p,m ¥ ('l)m'<? m %) Op,q+s



Taking £(t) = t¥ in equations (1), r = 0(1)q, gives the identities

a q
r pI"I'l
zm %4, p,m = r+1’ qu,PJm B 7P:l
m=0 m=0
qd q
. ) pr+e _
Zm BQ:P)m (r + 1) (r + 2) ’ ZGQ)P}m OP}E
m=0 m=0

which were used as a final check on the tables.

All the basic formulas, summed and normal, in backward difference and
backward ordinate forms, have now been derived. The remaining sections of the
report are devoted to the presentation of general and specific algorithms for
starting and continuing the integration.

BACKWARD STARTING ALGORITHMS

A backward starting algorithm is one that produces the backward differ-
ences of fo, up to order q, given merely the initial conditions, equa-
tions (2), and, of course, the differential equations (1). This is equivalent
to an algorithm that will produce backward values of the ordinates, f.p, for
p = 1(1)q; it is then a simple matter to obtain the backward differences at
fo. (See the appendix for details.)

The desired algorithm, in normal form, is implicitly contained in equa-
tions (21) with n =0, j = -p:

q
J-p = Jo - hZ“q,p,mf-m W
m=0
q E
X_p = Xpo - phyo + h2 Esq’p’mf-m (23)
m=0
f'P = £(to - thx-p,vy-p) J

for p = 1(1)qg. This is a set of 3q dimplicit equations for the 3g unknowns
Y-ps X_ps f_p.

If an approximate solution is known, an improved solution is readily
obtained by iterating equations (23); inserting "o0ld" values in the right mem-
bers produces "new" values in the left members. Collatz (ref. 4, pp. 99-101)
exhibits the o for g = 2, 3 and discusses the convergence of the iteration,
but does not derive the general formulas. Two methods of obtaining an initial
approximation will now be given.

10



Bootstrap Starter

Since only one value of £, namely f,, is known initially, the simplest
possible procedure is to take q = O in equations (23). Setting p = 1 gives
the "predicted" values of x, y, and £ at +t-3. Then setting q =1, p = 1,
gives corrected values. Keeping ¢ = 1 and now setting p = 2, gives pre-
dicted values at t-z. This bootstrapping procedure can be repeated until the
desired value of ¢q 1is reached. The explicit algorithm is

Predictor p = 1(1)q A

p-1
Y-p = Jo - hzap'l:P’mf‘m
m=0

p-1

X.p = Xg - phyo + hZZBp-l,p,mf-m
m=0

£y = £(t-p,x-p,y-p)

> (24)
Multiple corrector k=1(1)p
p
Y-k = Yo 'llizq?,k,m:-m
=0
1%
X_x = Xg - kKhyg +1f2§:Bp,k,mf—m
m=0
fox = £(t-kyX-k,¥-k) y

Experienced computer programmers will recognize this as a simple, nested DO
LOOP.

To make the procedure more tangible, the first few algorithms are written
explicitly below:

p = 1l; predictor ¥-1 = Yo - hig
h2
X.1 = Xo - hyg + 5 fo
foa = £(t-1,%-3,¥-1)
k = 1; corrector V-1 = Yo - % (fo + £-1)

2
X-1 = Xo =~ hyo + %? (efo + £-1)

fox = £(t-1,%-1,y-2)

11



|1

p = 2; predictor Yoo

X-2

Multiple corrector {y-i

k=1 X-1

p = 3; predictor V-2

Multiple corrector ( y-1

k= 1( x-q

Yo - 2hf-3
2
Xo - 2hyo + %; (2f0 + 4f_1)
f(t-Z)X'Z,y-Z)
Yo - 15 (5€0 + 8f-1 - £-2)
Xo - hyo +-gz (Tfo + 6f-1 - £-2)
£(t-1,%-3,y-1)
Yo = % (fo + bf-y + £-3)
h2
Xo - 2hyg + ?;-(Efo + Lf_q)
£(t-2,%X-2,y-2)
Jo - % (3fo + 9f-2)
2
%o - 3yo + = (9fo + 18-y + 9f-z)
£(t-3,X-3,¥-3)
h
Yo - oy (9fo + 19f-1 - 5f-2 + f-3)

- hyg + (97fo + 114f_y - 39f-5 + 8f-3)

360
f(t-l,X-1,Y-1)
Yo - 3 (fo + ke + £-2)

Xo - 2hyg + %g (28fo + 66f-1 - 6fap + 2f_3)
£(t-2,X-2,¥-2)

Yo - § (3fo + 9f-1 + 9f-p + 37-s)

xo - 3hyo + §§1 (351f0 + 972f-1 + 2U3E—p + 54P-3)

f(t-S)X-S;y-B)

The bootstrap starter seems to be quite efficient in practice, but it is
awkward and space-consuming when programmed for sutomatic computers, because

of the multiplicity of matrices and algorithms required.

This suggests the

following logically simpler method.

12



Iterated Starter

The bootstrap starter is essentially an efficient method of obtaining
first approximations for use in the right menmbers of equations (23), which are
then iterated. A logically simpler, but less efficient method is to initial-
ize by setting f.py = fy, m = 1(1)q, in the right members, and then iterate
the single set of equations (23).

Backward Starter, Summed Form

Starting with equations (18) and (20), instead of (23) and again setting

n=0, J=-p gives the implicit, summed form of the backward starter:
p = 1(1)a
a )
y-p = fo * hz7q,p,mf-m
m=0

a
-p = Bo - (p + 1)hAp + hzch,p,mf-m

o > (25)

]
Il

f-p = f(t—pyx-pJY-p)
a
AO = yO - hzyq,o’mf-m
m=0
q
Bo = X + hig - hzzoq,o,mf_m J
m=0

Initial values can be obtained by the obvious bootstrap procedure or by start-
ing with f_p = fo, m = 1(1)q.

2 2
Xo + hAg - %5 fo = X0 + hyo +-<f%> h™f,

Equations (25) can then be iterated until they converge.

Bo

This algorithm is mentioned mainly for the sake of completeness. The
principal reason for introducing the first and second sums is to obtain better
control of the accumulated round-off error during a long integration, but this
consideration may be irrelevent to a starting procedure.

Before turning to the subject of forward starting procedures, it may be

noticed that the backward starter (egs. (23)) produces the ordinates f.p,
p = 1(1)q. These are easily converted to backward differences at fg (see the

13



appendix). If summed forms of the forward integration procedure are to be
used subsequently, the initial values of Ag and By are easily computed from
equations(l6), with n = 0. Thus even here there is no compulsion to use the
summed form of the starter.

FORWARD STARTING ALGORITHMS

The derivation of forward starting algorithms is almost trivial., Each
of the backward starters discussed previously becomes a forward starter by
means of the simple transformation

h--h

Xem Xm

Jem 7 I

£y = T p

-m
This produces the forward ordinates, fy, m = 0(1)q.

The conversion to backward differences at +t is straightforward. How-
ever, to do this on an automatic computer would involve either losing all
informetion at the points between 1o and ty, or else increasing the storage
requirements excessively. Furthermore, either cholce leads to a procedure
that is different, in its external appearance and mode of usage, from the
backward starter.

A preferable procedure is to compute the backward difference table at
tq and then extend it back to to by holding V9f constant; this, of course,
is consistent with the starting procedure. This is easily done, and program-
ming details are given in the appendix.

Choosing the latter alternative provides computer programmers with a
battery of starting procedures, forward or backward, bootstrap or iterative,
in normal or summed form, with identical external appearance. In every case
the input data consist of the initial conditions, and the.output data consist
of the table of backward differences (and sums) at the initial point, in a
form compatible with the forward integration procedures to be discussed next.

FREDICTOR~CORRECTOR ALGORITHMS FOR FORWARD INTEGRATION

The purpose of this section is to present a variety of algorithms for the
forward integration from ty to tp+i. OSpecifically, it is assumed that the
input consists of tn, Xn, yn, fn, and the first g backward differences of
fn, together with the sums Ap and By when appropriate. The output is to be

1L




the same list of quantities at tp4ie The combination of any of these algo-
rithms with any of the starters provides the complete solution of the initial-
value problem.

A1l the algorithms to be presented involve the use of a predictor fol-
lowed by a corrector, requiring two calculations of f(x,y,t). Conflicting
philosophies regarding the need for a corrector can be found in references 3
and 5. The general consensus among automatic computer users seems to favor
the use of one corrector. In the algorithms given below the user can, of
course, omit the corrector if he chooses,

The backward difference equations (4) through (6) and (15) through (17)
give predictor formulas when j =n + 1. Taking J =n and then replacing
n by n + 1 yields corrector formulas. In every case, if both predictor and
corrector are truncated at the same value k = g, then subtracting the pre-
dictor from the corrector and using the recurrence relations (egs. (9)) for
the coefficients ¥ and ¢ gives a shorter formula for the corrector.

Throughout, predicted values are indicated by an asterisk (*).

Normal Form

First-order system.- The Adams-Bashforth predictor is
a

_ ) k
Yotr = yn'+11§J7-1,kv Tn (26)
k=0

and the Adams-Moulton corrector is

g1

. *
Yn+r = Yn+a T BY.5 ¢V Tow (27)

Simple second-order system.- If the first derivative, y, does not occur
in the differential equation and is not required, the formulas for x are:

StOrmer predictor a
* 2
Xpta = 2%¥p - X,_y t h E:G-l,kkan (28)
k=0

Cowell corrector g+1_%

*
Xnt+a = ¥n+1 t hzc-qu_v Thsa (29)

General second-order system.- When the first derivation, y, is present,
equations (4) and (6) yield the predictor

15



q
*
In+1 = Yn'+ll§:7-l,kkan
k=0
q (30)
* *
Xnt1 = X + hypyy + hzzzj(ﬁ-l,k+1 - 7-1,k+1)kan
k=0 J

and the corrector

_ * R
Ynt1 = Yn+1 t hy_l’qvq fn4
(31)
* gq+1
Xp4+1 T Xp+a + h2(0-1’q+1 - 7o,q+1)V fnta
Summed Form
The predictor is a 4
X .= ke
Yn4r = An T h ) Vo3 k"
k=0
q (32)
*
xrl'l']_ = Bn + h ZU_l’k+2V f
k=0 J
The corrector is
* +1 *
In+r = Ynta + h’)’_l,q+1vq fn+:|_
(33)
* +1 %
Xp41 = Xp+1 t hZU_l’q+2Vq fl’l-l-l
and, of course,
Apnyy = Ap + hfpyg
(3%)

Bp+i = Bp + hAAnys

In all these predictor-corrector algorithms, the calculation of the dif-
ference table is facilitated by noting that, on defining

*
€ = fn+1 - Tnia
the differences are

(see ref. 1, p. 196). The predicted differences, VKfji1, are obtained, of
course, directly from the definition:

16



* *
Vin+1 = fn4q - fn

VLR Ly = iRy - OBy, k = 1(1)q

CONCLUDING REMARKS

The present report displays a variety of algorithms for starting and
continuing the numerical integration of systems of ordinary differential equa-
tions. The exhaustive testing of these algorithms, for the purpose of compar-
ing their effectiveness, would be an expensive process. Fortunately, a great
deal of relevant experience has been obtained in recent years in computing
installations throughout the world. In the present writer's opinion the best
compromise between the conflicting desiderata of speed, accuracy, and program-
ming compactness can be achileved by the following choice:

(l) Use the fourth-order methods for first-order equations, sixth-order
methods for second-order equations (q = k4, 6, respectively).

(2) TUse the iterated starter, iterated eight times.

(3) Use the summed form of the predictor-corrector algorithm, in back-
ward difference form.

(4) Carry four extra significant decimal digits, in floating-point form,
to control round-off errors.

The effectiveness of the summed form of the predictor-corrector algo-
rithms has long been known to astronomers (ref. 3), and additional evidence is
furnished by Henrici (ref. 1, pp. 336-339). The iterated starter is somewhat
less efficient than the bootstrap version, but is far simpler to program and
is much more modest in its storage requirements.

The use of backward differences in the forward integration is preferable
to the use of backward ordinates for two reasons: (l) the backward ordinate
formuila tends to add nearly equal guantities of alternating sign, whereas the
backward difference formula adds monotonically decreasing quantities; and
(2) the availability of the difference table makes error estimation and
automatic adjustment of the interval size a straightforward procedure.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., April 19, 1965
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APPENDIX
CONVERSION OF ORDINATES TO DIFFERENCES

The calculation of a table of backward differences from a table of ordi-
nates, and its extension in either direction when higher order differences are
neglected, is a familiar procedure to computers working with pencil and paper.
The programming of such procedures for automatic computers is less familiar,
and the purpose of this appendix is to give some typical algorithms in FORTRAN
format, the most widely used scientific programming language.

The algorithms exhibited here are written as though x, y, £, A, and B
were scalars, When they are vectors, the algorithms are easily generalized
by the addition of a second subscript and suitable additional "DO LOOPS" over
the range of the second subscript (the dimension of the vectors).

Since the FORTRAN language does not permit subscripts nor indices in
loops to assume nonpositive values, certain logical artificialities appear in
these algorithms. Experienced programmers should have no difficulty in
removing them for other, less restricted, programming languages.

Backward Starter

A1l the versions of the backward starter discussed in the main body of
the report produce the backward ordinates, f.p, p = O(l)g. Suppose these are
placed in the array L:

L(p +m) = £y

where m 1s an arbitrary, positive integer. Then the nested DO LOOP

DO k=1, q
(- l=g+1-%k
DO g=1, 1
n=m+qg - J
- L(n + 1) = L(n) - L(n + 1)

will yield vPfy in IL(p + m), p = 0(1)g, a > 1. The structure of the algo-
rithm is illustrated by the following diagram, in which g =3 and m = O (in
violation of the FORTRAN restriction!):

18



Initial values k=1, 1 =3 k=2, 1 =2 k=3, 1=1

j=1l,n=2 j=1,n=2 j=1l,n=2
L(3) =f-z |L(3) = L(2) - L(3) | L(3) = 1(2) - L(3) [L(3) = L(2) - L(3)
= fop - -3 = Vf-1 - V-2 = &fo - ¥3f.q
= vf-2 = V3f.y = v3fo
. _ j=2,n -2 — 37= 2, ﬁ =1
L(2) = f_o L(2) = L(1) - L(2) | L(2) = L(1) - L(2)
=f_3 - fo = Vfp - Vf-2
= Vf-1 = ¥fo
j=3,n=0
L(1) = f-1 L(1) =1(0) - L(1)
=fo - fo1
= vfo
h__i(o) = fo

It is evident from the diagram that increasing ¢ by unity adds one row to
each column and adds an additional column on the right with one row.

Forward Starter

A1l the versions of the forward starter discussed in the main body of the
report produce the forward ordinates, fp, p = 0(1)g. Suppose these are placed
in the array L:

L(p + m) = fp
Then the nested DO LOOP

o~
]
Q
+
I_.J
i
b

DO j=1,1
n=m+gq - J
L. L(n + 1) = L(n + 1) - L(n)

19



will yield fop in L(p + m), p = 0(1)g. The diagram illustrates the case
qg=3, m=0,

Initial values k=1, 7- 3 [ x ;'2, 1-2 K = 3, 1 -1
j=1,n=2 =1, ﬁ _ 2 j=1l, n=2
L(3) = £s L(3) = L(3) - L(2) { (3) = 1(3) - L(2) | L(3) = (3) - L(2)
=fg - 2 = Vfz - viz = V¥fs - Vfz
= vfs = v2f3 = VI3
7 J = 2; n=1 | 4= 2, n=1 B -
L(2) = fo L(2) = L(2) - L(1) | L(2) = L(2) - L(1)
=fz - 3 = viz - via
= vz = v@fz
) j=3,mn=0 |
L(1) = £ L(1) = 1(1) - L(0)
=1y - g
= vy
L(0) = fo o o

To obtain backward differences of fo it is necessary to maske the
assumption that v&*lf = 0. Then VvIf is constant:

Vi, = vif, = vi ,  p = 1(1)q
Then the additional nested DO LOOP

r=9q -1
— DO k=1, r
1 =qgq-%k
DO =1, 1
n=m+q-J
L L(n) = L(n) - L(n + 1)

yields vPf, in L(p + m), p = 0(1)q, the desired result. The diagram
illustrates the case ¢q = 4, m = O.

20



Initial values

k=1, 1 =3 k=2, 1=2 k=3,1=1
L(4) = v*f
7 _ J=1, n=23 J=1l, n=13 J=1, n =73
L(3) = v°fz | L(3) = L(3) - L(¥) | L(3) = L(3) - L(4) | L(3) = L(3) - L(k)
= V°f3 - V4fs = Vfp - vz = V°fy1 - vy
= V°fz = V°f1 = V1,
J=2,n=2 J=2,n=2
L(2) = v¥f2 |L(2) =L(2) - L(3) | L(2) = L(2) - L(3)
= Vfz - V3f2 = V¥f1 - ¥fy
= VBfy = V3f,
J=3,n=1
L(1) = vf1 | L(1) = L(1) - L(2)
= vfy - ¥f1
= ve,
L(o) = fq

21
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TABIE T.- 7P:k-

—

ohy | 7209 | 1uu0y | 60480y | 1209607
3 | x| 5 | 6 7
91 251 Y75 | 19087 | 36799
-1 -19 -27 -863 -1375
1 11 11 271 351
-9 -19 -11 -191 -191
-55 251 27 271 191
-161 | 1901 475 -863 -351
-351 | 6731 | -ke77| 19087 1375
-649 | 17261 | -17739 | 198721 | -36799
-1079 | 36731 | -52261 | 943759 | -L3La2hl
TABLE II.- op x
ohoo | 2u0s | 604800 | 604805 | 36288000
4 5 6 7 8
19 18 4315 hios |1 237671
-1 -1 -221 -190 -9829
-1 0 31 31 1571
19 1 31 0 -289
299 -18 -221 -31 -289
1319 -317 4315 190 1571
3799 | -1636 84199 -L4125 -9829
8699 | -5435 | Loéh7i| -88324| 237671
17219 | 14134 | 1866091 | -584795 | 5537111




ok

a=0: 27]a=1: 127| qa=2: by |
p/m| O 0 1 0 1 2
o [|-1 -7 1 -15 L] -1
1 |-3 -13| -5 -25 | =12 1
2 -7 | -23 23 1-281 -9
3 -3§7 4ﬁ =55
g =3: 7207 | q=k: 1oy
o/m] © 1 2 3 0 1 [ 2 | 3 | »
0 | -469 177 -87 19| -965 Lo | =336 146 -27
1| -739| -393 63 =111} -1hk67 ] -830 192 -66 11
2 | -709 | -783]|-327 19| -1h29 | -1522 | -T720 82 -11
3 | =739 -633|-897| -251] -1451] -1374| -1632 | -610 27
kb | -46g [ -1743 ( 873 | -1901 | -1413 | -1586 | -110k | -1902 | -475
5 -1915 962 | -6336 | 3646 | -haT77
. q =5: 60480y 7; - ;; -
p/m 0 1 2 3 ,”i—, ””fB'f j
0 | -41393 23719 | ~22742 14762 | -5L4k9 863
1 | -61343 | -36215| 1077k -5482 1817 -271
2 | -60209 | ~-62969 | -32150 5354 | -1417 191
3 | 60671 | -59063 | -65834 | -28330 2489 -271
b | -60209 | ~62297 | -54998 | -71254 | ~2L256 863
5 | -61343 | -55031 | -75242 [ -37738| -84199 | -19087
6 | -41393 | -175865 | 231274 | -456982 2&8563==J -198721
] Q=6: 1209607
p/m 0 1 2 3 71* _ “55_ o _éf‘
0 -8L161 55688 | -66109 57024 -31523 9976 -1375
1 | -122335| ~T74536 26813 | -1798k4 8899 -2648 351
2 | -120609 | -12k792 | -67T7165 14528 -5699 1528 -191
3 | -121151 | -119272 | -128803 | -60480 7843 -1688 191
4 | -120769 [ -122L88 | -115261. | -135488 -53795 3832 -351
5 | -121311{ -118312 | -129859 | -102976 { =-1h7773{ -46kok 1375
6 | -119585 | -130936 | -89437| -17798k4 -54851 | -1766L8 | -36799
7 | -157759 | 138008 | -903715 | 1198528 | -1465949 | 717928 | -43L2hk1




V.-

[0

q,p,m
q=0 120} q=1: 120 | g = 2: 240¢
p/m| O o] 1 0 1 2
0 1 1 0 19 21 -1
1 }13 12 1 239 | 22| -1
2 23 | 14 b9 | 242 | 19
3 739 | 422 | 299
g = 3: 240c g = L4: 604800
p/m| O 1 2 3 0 1 2 3 L
0 18 51 -k 1 4315 21kl | -2334 | 1136 -221
1 239 22| -1 0] 60259 5420 -66 | -124 31
2 | 4801239 22| -1] 120991 | 60104 5730 | =376 31
3 | 71| 476 {245 | 18 181471 | 120836 | 60L1L | 5420} -221
h | 9k | 793 | 368 | 817 | 241699 | 182576 | 118626 | 62624 | L4315
5 306715 | 220124 | 225726 | 75476 | 84199
g =5: 604800
tp/m 0 1 2 3 L 5
0 4125 3094 | -hesk 3036 | -1171 190
1 60290 5265 ol -3k 186 -31
2 1120991 | 60104 5730 -376 31 0
3 1181440 | 120991 | 60104 5730 | -376 31
4 | 241889 | 181626 | 120526 | 60724 | 5265 | -190
5 1302590 | 240749 | 184476 | 116726 | 63574 | L1255
6 358755 | 327340 | 178874 | 266976 | 54851 | 88324
- B g = 6: 36288000
p/m 0 1 2 3 L 5 7 6
0 237671 2hhe1l | -L0o1kT5 378740 | -217695 70374 -9829
1 3618971 306474 38205 -57460 347251 -11286 1571
2 7259171 | 3607974 339465 -16780 2475 1734 -289
3 | 10886111 | 7261194 | 3601905 349580 -26895 3594 -289
4 | 14514011 | 10888134 | 7255125 | 3612020 339465 | ~20826 1571
5 | 18145571 | 14503914 | 10921125 | 7200140 | 3667005 | 306474 -9829
6 | 21762971 | 1821437k | 14297505 | 11265140 | 6856125 | 3873414 | 237671
7 | 25639271 | 20099274 | 23205465 | 5979020 | 19583625 | 1865034 | 5537111
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d,p,M
g = 0: oci q=l#.2-ou .q_>=2 MlEOL_
p/m] O o0 [ 1 o] 1] 2]
1|1 1] 1 5| 81-1
2 0 L Lii16 | 4
3 91 olea7
a4 =3: 2l “’J';“g 7200 |
p/mjof 1] 2 3] o] 1 2 '3 o
119119 =51 1| 251 646 | -264 1061 -19
2 | 8]32 8] O] 232 992 192 32 -8
3 19127) 27 9| 243 ] 918 | 4L8 3781 -27
L O [6h ] -32 6] ook {102k | 384 1024 204
5 L75 1 -250 | 3000 | -1750 | 2125
q = 5: 14400
p/m| O 1 2 3 L 5
1 | k75| 17| -T798 L8p | -173 27
2 | 448 20654 22k o224 ~-96 16
3 | 45911971 | 1026 | 1026 | -189 27
4 | 448 [ 20L8 768 ] 2048 448 0
5 |75 11875 | 1250 1250 | 1875 475
6 0| k752 | -6048 | 11232 | -6048 | k752
q = 6: 60480a
p/m 0 1 2 3 I 5 6
1 |19087| 65112 -L6L6l 37504 | -20211 6312 -863
2 18224 90240 528 21248 | -12912 hook -592
3 |18k95| 87480 31347 | 58752 -19683 5832 -783
L 18304 89088 24576 96256 | 11136 3072 -512
5 (18575| 87000 31875 80000 | 58125 28200 -1375
6 |17712| 93312} 11664 | 117504 | 11664 93312 17712
T |36799 | -41160 | 418803 | -570752 | 717213 | -353976 | 216433
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TABIIE VI-" B

g,p,m
q=0: 2Bjgq=1: 6Bl q =2: 24
plm 0 1 1 2
1 2 1 61 -1
2 L 8 161321 0
3 27|54 | 27
 q=3: 3608 | g = b: 14LOB
p/m | O {1 [;QA, 3 0 ) 2 3 N
1 97 | 1314 | -39 81 367 540 |-282| 116 | -21
2 |22k | 528 -48 | 16| 848 {230k {-L4BO | 256 | -48
3 351 ] 972|243 | 54| 1323 {412 | 486 | 540 -81
Lo {448 {1536 | 384 {512 | 1792 | 614k | 1536 | 2048 0
5 2375 | 7500 | 3750 | 2500 | 1875
- i_ B q - 5: 30240
p/@ 0 1 2 3 b
1 7386 | 12945 | -9132 5646 | -2046 321
2 | 17040 | 52224 | -17760 { 13056 | -48L48 768
3 126568 | ouso7 | -194hk ) 23490 | -7776 | 1215
L 136096 | 136704 | 16896 | 583681 -7680 | 1536
5 | k5750 { 178125 | 37500 | 93750 [ 18750 | k4125
6 | 53136 | 233280 | 23328 | 176256 | 11664 | L6656
o q = 6: 1009608
0 1 2 3 b 5 6
28549 57750 | -51453 | Lek8L | -23109 7254 -995
65728 | 223488 | -107520 | 100864 | -55872 | 17664 | -2432
102465 | 400950 | -64881 | 170100 | -88209 | 27702 | -3807
139264 | 577536 -9216 { 335872 | -107520 | 36864 | -5120
176125 | 753750 46875 | 5125001 -28125 | 57750 | -6875
212544 | 933120 93312 | 705024 L6656 | 186624 0
257593 | 1051638 | 324135 | 58584k | 1439383 | 12965k | 175273
A-2116
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